
1 

 

 
12th ICBEN Congress on 

Noise as a Public Health Problem 

 

An attempt to predict ISE by a spectral estimator 

Toros Ufuk Senan1, Armin Kohlrausch2, Sam Jelfs1  

1  Philips Research Laboratories, Eindhoven, The Netherlands (corresponding author) 
2  Human-Technology Interaction, Eindhoven University of Technology, Eindhoven, The Netherlands  

 

Corresponding author's e-mail address: toros.senan@philips.com 

 

ABSTRACT 

The distractive effect of background sounds on cognitive performance is investigated using 

the paradigm of irrelevant sound where the effect is called the irrelevant sound effect (ISE). 

The effect is quantified by comparing cognitive test scores under different acoustic conditions. 

Even though the acoustic properties are well established and three predictors have been 

proposed in literature, a single metric that relates the cognitive distortion to an acoustic feature 

has not yet been successfully developed. The present work investigates one of these 

estimators, a spectral parameter proposed to be an ideal metric to predict ISE: frequency-

domain correlation coefficient (FDCC). The parameter measures the spectral variation 

between perceptually distinguishable segments of distracting sounds. In order to evaluate 

FDCC, alternating noise pulses and noise-vocoded speech stimuli are generated in a way that 

the spectrum of the adjacent segments of the sound varies systematically. Finally, the stimuli 

are employed in short-term memory tasks and the parameter is evaluated under the light of 

the test scores. 

 

INTRODUCTION 

Distractive effects of background sounds were investigated under the paradigm of irrelevant 

sounds and the effect was labelled as the irrelevant speech effect (ISE) [1]. It was soon 

discovered that non-speech sounds also develop cognitive distortion so the phenomenon was 

renamed as the irrelevant sound effect while keeping the acronym the same [2, 3]. Laboratory 

studies showed that the effect is robust: Extraneous sounds impair memory performance. 

However, the degree of disruption depends on both the properties of the irrelevant sounds [4, 

5] as well as those of the cognitive task [6, 7, 8]. And even though the key functions of the ISE 

has been well established, developing a successful predictor was shown to be a complicated 

process [9, 10].  

Typically, ISE can be quantified in the lab environment where participants perform a certain 

cognitive task while being exposed to background sounds which are not relevant. The test 

scores obtained under different acoustic conditions are compared to quantify the effect. One 

of the most common tasks employed in the ISE literature is a serial-recall task: To-be-

remembered items (e.g. letters or digits) are presented in a randomized order on a computer 

screen together with irrelevant acoustic stimuli to the participants and participants are asked to 

recall the order of the items presented. Although the brain tries to ignore the acoustic stimuli, it 
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still processes the visual as well as the acoustic input which eventually diminishes the 

cognitive performance.  

This unavoidable conflict is often explained by the changing state hypothesis [11]. The 

hypothesis states that an acoustic stimulus containing segments of sound which differ in terms 

of acoustic properties, produces much more disruption than a steady-state sound. Further 

studies revealed that while successive sound tokens changing in frequency disrupt the 

memory performance [12, 13], varying the sound pressure level does not create disruption 

[14, 15]. The ISE is observed under any acoustic condition which satisfies the changing state 

hypothesis: background music [16], alternating tones [13, 4], background noise [17] as well as 

native, foreign and reversed speech [18].  

The changing state hypothesis attempts to explain the disruption by structuring a guideline in 

order to observe the effect. However, the magnitude of the effect is much more complicated to 

predict since the disruption reaches a maximum using speech [3, 19, 20], suggesting that the 

proper explanation of the phenomenon should be derived from speech perception properties 

rather than global acoustic features. Two predictors from the literature follow this reasoning: 

the speech transmission index (STI) and the fluctuation strength (FS).  

The speech transmission index (STI) is a room acoustic measure derived from the results of 

subjective intelligibility tests typically conducted in enclosed acoustic environments. In order to 

minimize the costs and the time spent for such intelligibility tests, the concept of the 

modulation transfer function was applied to predict speech intelligibility [21]. STI is a temporal 

distinctiveness metric which is defined by the amplitude modulation ratio between the modified 

signal (e.g. recorded signal ) and the original (e.g. source signal ) which was applied into a 

sigmoidal function in order to predict the error rates of the cognitive task within the context of 

ISE [22]. There are limitations of the model: The model seemed to be suitable for degraded 

speech stimuli only and it requires a reference signal which is not always available. More 

recent literature also reports that STI can reveal unrealistic values for non-speech stimuli [9].  

A second model, based on the fluctuation strength [23], is a psychoacoustic sensation dating 

back to the original work of Zwicker and Fastl [24]. FS is perceived when listening to slowly 

modulated (<20 Hz) sounds and it works in a way that FS value, expressed in vacil, reaches 

the maximum with fluctuations of approx. 4 Hz, which is close to the value of the average 

syllable rate in running speech [25]. FS was first used in the study of Schlittmeier et al. as a 

prediction model of ISE [19]. The experimental results and the prediction values shared 50 % 

of the variance. More specifically, the values generated by the prediction model were within 

the interquartile range of the error rates for 63 out of 70 cases, including both speech and 

non-speech sounds. This is quite an impressive outcome. However, most relevant to this 

paper, the model lacks the ability to distinguish amplitude and frequency modulation. Such a 

limitation would result in predicting a maximum error rate for amplitude-modulated white noise 

with the modulation rate of 4 Hz, which in fact does not create an ISE. 

A more recent experiment, which compared the aforementioned two models, demonstrated 

this shortcoming [9]. The experiment employed noise-vocoded speech as the distracting 

stimulus in the serial-recall task with the 1-band noise-vocoded speech condition, which is a 

band-limited white noise mapped to the intensity modulation of the original speech, resulting in 

the highest FS value while showing no difference in the test scores when compared to silence.  

The only frequency-domain metric that follows the guidelines of the changing state hypothesis 

is called the frequency-domain correlation coefficient (FDCC) and was first mentioned in the 

study of Park et al [26]. The study built an adaptive masking scheme to systematically modify 

the distracting speech stimuli and the experimental results were investigated under the light of 

the prediction model. Although the results were promising, this is the only study where the 

behaviour of the model was observed under speech conditions. In another study [27], which 
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forms the basis of the first experiment in the current paper, white noise pulse trains were 

generated in order to obtain a set of stimuli where the spectral and temporal features were 

systematically modified. A temporal metric, the average modulation transfer function, was also 

presented in the study in order to evaluate the effect of temporal features of the background 

sounds on memory performance. However, test scores did not yield a meaningful trend, and 

therefore it was not possible to evaluate the metrics successfully.  

Two experiments where the spectral features of the stimuli were manipulated systematically in 

order to evaluate the estimator are presented in this paper. First, a white noise pulse train was 

modified such that the temporal and spectral features varied independent from each other. 

Second, a noise-vocoding technique was used to decrease the spectral parameter value in a 

controlled manner by increasing the number of frequency bands employed. Spectral and 

temporal parameters are explained in detail in the next sections, followed by the two 

experiments. The results are examined in the discussion section and the metric is evaluated in 

the conclusion section. 

FREQUENCY - DOMAIN CORRELATION COEFFICIENT 

The frequency domain correlation coefficient (FDCC) is a correlation measure between 

successive segments of a sound in the frequency domain. It was proposed as a spectral 

distinctiveness metric [26] and attempts to explain the behaviour of the ISE by determining the 

spectral similarity between adjacent tokens of the sound.  

In order to determine the positions of the sound tokens, the intensity envelope of the signal is 

obtained by squaring and applying a second order low-pass filter at 10 Hz. The median of the 

resulting envelope is computed and the signal parts with lower amplitude are eliminated. The 

median duration of the time intervals of the potential tokens are obtained and determined as a 

threshold. The intervals shorter than the threshold are discarded. For each of the remaining 

tokens, octave band-pass filters, with centre frequencies ranging from 125 Hz to 8 kHz, are 

applied. The power spectrum, P, is calculated for each octave band of each token. The FDCC 

is formulated as follows: 
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                                  (1) 

where Pi,j indicates the 1/3-octave band power spectrum for the token, i, in the frequency 
band, j. The FDCC shows variation in the spectrum from one segment of the sound to the next 
one. A low correlation value is expected to create a large amount of disruption within the 
context of ISE since it indicates high spectral distinctiveness.  
 

AVERAGE MODULATION TRANSFER FUNCTION 

The modulation transfer function (MTF) was defined as the modulation index reduction of the 

intensity envelope as a function of modulation frequency [22]. The modulation index can be 

quantified by comparing the temporally modified signal with the reference signal.  

First, an octave band analysis is carried out (125 Hz – 8 kHz). Second, the intensity envelope 

for each octave band is computed by squaring the output. The resulting signal is then low-

pass filtered with a cut-off frequency of 30 Hz and analyzed with a 1/3-octave band pass filter 

for the modulation frequencies ranging from 0.5 Hz to 16 Hz in order to cover the range of 

modulation frequencies typically found in speech. For the last step, the root-mean-square 

(RMS) value of the intensity envelope was computed and normalized.  

The result was a K x N matrix of modulation index values, where K and N refer to the number 

of octave bands and number of the modulation frequencies, respectively. The modulation 
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index for each octave band and for each modulation frequency, mij, was compared with the 

reference signal, resulting in a new K x N matrix defining the changes between the modified 

and reference signal.  

��� = ���,�
���,���	                                  (2) 

In order to establish a single value for the metric, the resulting MTF matrix was averaged in 

both dimensions and the parameter, AMTF, was obtained. 

 

EXPERIMENT 1 

Stimuli 

The first experiment focused on the relation between spectral and temporal features of 

distracting stimuli and the ISE, by modifying the spectral and temporal parameters 

independently. 

White noise was preferred since its flat spectrum provides an equal gain over all bands which 

enables modification in a controlled manner. White noise, G(t), was shaped by a Hanning 

window, W(t), with the size of w. The pulse, WG(t), was filtered into 1/3-octave bands with 

center frequencies ranging from 125 Hz to 8 kHz. Out of the nineteen pulses obtained from 

each 1/3-octave band, seven pulses which correspond to the 7 octave bands were chosen in 

order to avoid an overlap between different octave bands. 

The seven selected bands were summed and a pulse, with the duration of w, was 

synthesized. The pulse (P1) was generated by summing all the seven selected bands, of each 

new selected pulse xi, where i indicates corresponding octave band. 

�
 =	∑ ����������
                                 (3) 

  

Figure 1: Two seconds segment of the reference signal. P1 and P2, alternate every 250 ms.  

First, a half-second basic signal which consisted of two pulses of 50 ms duration was created. 

The amplitude of the first pulse, P1, was set to 0.9, and the amplitude of the second pulse, P2, 

was set to 0.3. A 1 min reference signal was generated where the two pulses alternated. The 

distance between pulses was kept constant at 250 ms for all the stimuli and P2 was modified 

in the time and frequency domain. A set of stimuli with a wide range of temporal and spectral 

variations was obtained. 

 

Changes in Time Domain: AMTF Modification 

For temporal variation, the width of P2 was systematically modified from 50 ms to 450 ms with 

a step size of 25 ms. It was observed that enlarging the width of the second pulse enabled 

AMTF values to drop while spectral parameter values remained constant. A subset of stimuli 

was created for experiment 1. The AMTF and FDCC values as a function of the pulse width 

sizes are presented in Figure 2. 
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Changes in the Frequency Domain: FDCC Modification 

A set of different gains to each octave band (125 Hz - 8 kHz) was applied for P2. Since 

modifying the gain structure of each octave-band would result a change in temporal features 

of the signal, AMTF values were checked in each octave band after different gains were 

applied. In order to find the most suitable gain values, which satisfy a variation in FDCC while 

keeping the AMTF constant, a numerical optimization was applied. The fmincon function in 

MATLAB was used to find the optimal gain, where the maximum number of iterations was set 

to 100 with the 0.01 tolerance of the AMTF value. 

Both of the parameter values for the generated stimuli are presented in Figure 3.  

Figure 2: FDCC and AMTF parameter values as a function of the pulse width of the second pulse, P2.  

Method and Procedure 

The serial-recall task began with three asterisk signs disappearing from the screen one by one 

indicating that the task will begin in three seconds. Nine digits (1-9) were presented on a 

computer screen to the participant. Numbers were displayed one by one every second, while 

each number was shown for 0.7 s followed by a 0.3 s pause. The presentation order was 

randomized in a way that consecutive numbers were not presented either in ascending or 

descending order. 

 

Figure 3: Each blue point represents one stimulus with two parameter values; the y-axis shows the 

values of the spectral parameter and x-axis shows the temporal parameter. Blue points circled in red 

represents the parameter values of the stimuli employed in the experiment.  
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After the presentation stage, a 10s retention period was inserted where the 10 asterisk signs 

disappeared one by one on the computer screen. For the recall stage, the participant was 

asked to click on the corresponding key buttons of the number pad on the screen in the 

correct order. The lay out of the key buttons was arranged in a randomized manner for every 

trial in order to eliminate the visual cue. In addition to that, the number keys disappeared from 

the screen after being pressed so the same number could not be selected more than once, 

and there was no option to correct the key input. 

The experimental design consisted of five blocks where every session began with the training 

block which consisted of four trials without any sound (silence). After the training block, the 

responsible researcher asked the participant if there were any problems regarding the test 

conditions before advancing in the session. 

There were 22 trials in each of the remaining four blocks. Ten trials were accompanied by a 

white noise pulse train with different FDCC values and 10 trials with different AMTF values. 

One trial in each block was carried in silence. The first trial of every block was the dummy trial, 

and the rest of the stimuli were presented in the randomized order. 

There were 5 min breaks between the blocks and the pilot tests showed that the whole 

session took 60-65 mins to be complete, including the breaks. 

Participants 

Ten volunteers from the Philips Research Laboratories in Eindhoven participated in the 

experiment (4 = females, 6 = males). They all reported normal hearing and vision by signing 

the corresponding bullets in the informed consent form and this was double checked at the 

end of the first block. The age range of the participants was 18-50 years.  

Material and Apparatus 

The experiment was designed using MATLAB (R2014a) and run on a Hewlett-Packard 

computer. Auditory stimuli were presented diotically in MATLAB via a PC soundcard (RME 

Hammerfall DSP Multiface). The sessions took place in a double-walled IAC soundproof booth 

(Industrial Acoustics Company GmbH) at Philips Research Eindhoven and Beyer-Dynamic DT 

990 headphones were used for playback. The average sound level of the stimuli was 

calibrated to 60 dBLAeq1min. 

Figure 4: Mean error rate percentages for 10 participants using the noise stimuli with different 

parameter values. The x-axis represents the stimulus number with 10 different values of FDCC (1-10), 

and 10 different values of AMTF (11-20). Error bars represent the standard error of the mean (SEM). 
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Results 

Only the digits recalled in their previously-presented serial position were marked as a correct 

response. The first trial, being the dummy trial, of each block was discarded from the analysis 

and therefore error rates represent the percentage of the incorrect answers for 21 trials in 

each test block. The mean error rates as a function of parameter values, for both estimators, 

are presented in Figure 4 for 10 participants.  

The first observation was that the experimental results did not yield a meaningful trend as a 

function of parameter values. In fact, in contrast with the literature, the highest score was not 

obtained under the silence condition while the error rate (28 %) was as high as expected [26, 

19]. Second, the spectral modification (FDCC) did not disrupt the performance any more than 

the temporal changes (AMTF), as opposed to the hypothesis. The mismatch between 

performance scores and parameter values, AMTF and FDCC, showed that the estimators are 

currently inadequate to predict ISE. 

 

EXPERIMENT 2 

For the second experiment, a noise-vocoding technique was used to create the distractive 

stimuli. There were two main reasons behind the choice: First, the lack of ISE in the first 

experiment might have occurred because of the non-speech like temporal structure of the 

stimuli and second, noise-vocoded speech (NVS) stimuli can be systematically modified in the 

frequency domain by changing the number of frequency bands it consists of.  

Stimuli 

Noise-vocoded speech is a manipulation of running speech where speech is filtered into 

frequency bands and the fluctuations of each frequency band are mapped to band-limited 

white noise.  

NVS was generated by dividing the speech signal between 50 and 8000 Hz into Hanning-

shaped bandpass filtered frequency bands. The width of the transition region between 

passband and stopband, the – 6dB cut-off frequency point, was determined by dividing the 

upper cut-off frequency of each band by 10. The speech signals were processed by 

employing the scripts used by a speech comprehension study [28] in Praat software (available 

at www.praat.org).  

The cut-off frequencies were determined using the Greenwood function which forms the 

mathematical basis of the cochlear implant array placement [29]. The number of frequency 

bands with the cut-off frequencies of the final stimuli are shown in Table 1. 

NVS was synthesized by replacing information in each frequency band with amplitude-

modulated band-limited noise and combining the resulting modulated noise bands. This 

technique enables the acquisition of a set of stimuli where the non-disruptive amplitude 

modulated white noise, 1-band NVS, was systematically transformed into a highly disruptive 

intelligible NVS by increasing the number of frequency bands. More important to the current 

study, such transformation allows an organized modification of the spectrum (see Fig. 5). 

The original sentences were taken from a speech reception study [30]. The samples consist of 

10 lists with 13 short Dutch sentences (6-8 s) per list. Short sentences were concatenated in 

order to create 10 long sentences (42-55s) and these sentences form the basis of the NVS 

stimuli. There were 7 acoustic conditions employed in the experiment: 1- band NVS, 2-bands 

NVS, 4-bands NVS, 6-bands NVS, 18-bands NVS, original speech and silence (SLNC). 
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Method and Procedure 

The serial-recall task used in the first experiment was also employed for the second 

experiment, with differences in the experimental design as well as the stimuli. There were 8 

blocks in each session where the first block was the training block, which consisted of 8 trials 

in the silence condition, and the remaining 7 blocks consisted of different acoustic conditions 

which were mentioned above. The presentation order of the block was randomized in a way 

that the silent block (control condition) was always the fourth. Each block consisted of 10 trials 

which were derived from 10 different original speech samples. One session took 60-65 min to 

complete including 2 min breaks after each block.  

 

Figure 5: FDCC values as a function of the number of frequency bands of NVS and original speech 

stimuli. Error bars represent SEM. 

Table 1: Noise-vocoded speech stimuli with the number of frequency bands and lower frequency 

boundaries. 

Number of frequency bands Cut-off frequencies 

1-band NVS 50 

2-bands NVS 50, 1160 

4-bands NVS 50, 370, 1160, 3125 

6-bands NVS 
50, 229, 558, 1160, 2265, 

4289 

18-bands NVS 

50, 98, 157, 229, 317, 425, 

558, 720, 918, 1160, 1457, 

1820, 2265, 2809, 3474, 4289, 

5286, 6506 

Participants 

Twenty-five native Dutch-speaking subjects (15 = females, 10 = males, between 18-50 years 

old) participated in the second experiment. They all reported normal hearing and vision which 

was a pre-condition of the recruitment procedure. They signed the informed consent forms 

where the criteria were cross-checked. Participants were paid a modest compensation fee for 

their contribution. 
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Material and Apparatus 

The experiment was run on a Hewlett-Packard computer using MATLAB (R2014b). All 

acoustic conditions were delivered diotically in MATLAB via a PC soundcard (M-Audio 

Transit). The participants were positioned in a double-walled IAC soundproof booth in the 

auditory lab of the Human Technology Interaction department at the Eindhoven University of 

Technology, and Sennheiser HD Linear 265 headphones were used for playback. The 

average sound level of the stimuli was calibrated to 60 dBLAeq1min. 

 

Results 

The analysis began by looking for a learning effect. The test scores were analyzed based on 

the presentation order, regardless of the sounds delivered. Mean error rate differences 

between test blocks and the training block were calculated and the results were summed with 

the mean error rate of the corresponding test block. The curve of the learning effect showed 

that the overall performance had a sudden increase until the end of the third block and then it 

was stabilized. The effect was highly significant and confirmed by repeated measures 

ANOVA, F (7, 168) = 11.59; p < .001. Statistical analysis presented in the following refers to 

the corrected scores. 

Figure 6 shows the test scores, represented as error rate percentages per acoustic conditions. 

The difference between the original mean error rate in the speech (41 %) and silence (32.3 %) 

conditions was slightly lower than what is reported in the literature, while silence condition 

yielded similar performance when compared to the literature [13, 19, 15]. The decrease in the 

performance as a function of the number of frequency bands between the 1-band and 4-

bands conditions was similar to the study of Ellermeier et al. [9] while the decrease in mean 

error rate in the 18-band NVS condition was unexpected. 

 

 

 

Figure 6: Mean error rate percentages of 25 participants as a function of the experimental conditions. 

Dark and grey bars represent original and corrected scores, respectively. Error bars represent SEM. 

The effect of sound on memory performance was significant and confirmed by a one way 

repeated measures ANOVA, F (6, 144) = 5.378; p < .001. Post hoc analyses were conducted 
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given the statistically significant ANOVA result. All possible pairs were compared by Tukey 

HSD tests. Seven pairs of statistically significant acoustic conditions (p < .05) are presented in 

the Table 2. 

 

DISCUSSION 

The experiments were designed in order to evaluate the FDCC parameter, a spectral 

distinctiveness metric, which follows the guidelines of the changing state hypothesis by 

focusing on the spectral properties of the successive sound segments. The stimuli were built 

in a way that the behavior of the parameter could be observed in relation to the ISE by 

manipulating the estimator values systematically.  

Two types of stimuli were generated: white noise pulse trains and noise-vocoded speech. The 

motivation behind the choice of the stimuli was based on two criteria: It should be possible to 

modify the temporal and spectral features in a controlled way and the stimuli would be 

expected to cause ISE.  

 

Table 2: Pairwise comparison of test performances for the all possible pairs by Tukey HSD test. Only 

the pairs with statistical significance are reported. 

Statistically significant pairs Mean error rate (%) p values 

SLNC – Speech 46.9 - 54.9 p < .002 

SLNC – 6-Bands 46.9 – 57.0 p < .001 

1-Band – 6-Bands 46.4 – 57.0 p < .001 

1-Band – 18-Bands 46.4 – 52.6 p = .042 

1-Band - Speech 46.4 – 54.9 p < .001 

2-Bands – 6-Bands 48.4 – 57.0 p < .001 

2-Bands - Speech 48.4 – 54.9 p = .025 

 

The first experiment was structured with the hypothesis that the stimuli with a wide range of 

spectral parameter values should disrupt memory performance much more than the 

temporally modified, spectrally static stimuli. However, the data clearly discarded the 

hypothesis by presenting a lack of correlation between cognitive performance and the 

parameter values. In fact the memory performance, on average, showed no difference with 

the control condition. A possible explanation for the lack of distractive properties of the stimuli 

could lie in the periodic structure of the noise pulses. Even though the syllable rate (4 Hz) was 

taken as the noise pulse occurrence rate, the background stimuli of the first experiment were 

very different from speech stimuli. As a result, the lack of disruption under the background 

sounds in this experiment obstructed the clarity of the parameter evaluation. It would not be 

incorrect to say that the spectral parameter needs to be improved in any case since it failed to 

predict the lack of cognitive distortion in this particular experiment.  

This shortcoming was addressed in the second experiment by generating noise-vocoded 

speech stimuli which can systematically be modified in the frequency-domain and have 

sufficient properties to create an ISE. NVS stimuli allowed us to increase spectral variation by 

increasing the number of frequency bands which also led to the transformation of a non-
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disruptive, amplitude modulated band limited noise to highly disruptive and intelligible speech-

like stimuli. 

The results for the second experiment were in line with the literature in terms of silence and 

speech conditions except that 6-bands NVS had the largest distractive effect on memory 

performance instead of the original speech. However, similar results were reported in the 

literature where NVS was employed as distractive stimuli. Both in the current study and the 

study of Ellermeier et al [9], there were no significant differences between the most disruptive 

NVS condition and the speech condition.  

The increase in the performance as a function of the number of frequency bands was in line 

with the ISE studies employing NVS as distractive stimuli, except the 18-bands NVS condition 

[31, 9]. The increase in the performance under 18-bands NVS condition is puzzling, since it 

was expected to yield a magnitude of disruption at least similar to those of 6-bands and 

speech.  

For the second experiment, the FDCC parameter was partly successful: The performance 

drop between 1 to 6 bands NVS condition was reflected in the parameter values. However, 

the spectral parameter generated distinct FDCC values for 6-bands and speech stimuli, which 

was not the case according to the experimental results. In addition, the continuation of the 

parameter value drop beyond 6-bands turned out to be untrue, since the 18-bands NVS 

condition yielded a better performance than 6-bands NVS. Nevertheless, the systematic 

increase in the magnitude of disruption from 1 to 6 bands indicates that there is a strong effect 

of spectral components within ISE.  

 

CONCLUSION 

• Periodic noise pulses with temporal and spectral variation failed to create ISE. 

Although neither one of the estimators managed to predict the outcome, the lack of 

performance loss blurred the evaluation of the two estimators.  

• There were no significant differences in the experimental results between temporally 

and spectrally modified stimuli. It was expected that spectral variation would yield 

larger disruption than the temporal variation, which turned out to be incorrect, at least 

for the current study. 

• Memory performance under methodically manipulated speech stimuli did not result in a 

systematic decrease as the number of frequency bands increased, which was in 

contradiction to spectral parameter’s prediction.  

• The ISE cannot be estimated by the spectral parameter, in its current form, as the 

nearly monotonic decrease in the FDCC values contradict with the ceiling effect, 

observed under 6-bands NVS condition. The parameter should be adapted by 

investigating the reason behind this discrepancy. 

• Although the parameter failed to make accurate predictions within the context of ISE, it 

anticipated the trend in cognitive performance until a certain extent which, supports the 

role of spectral variations in the phenomenon.  
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